Anti-ATRX / DIA-AX1
Mouse monoclonal anti-brain tumor marker
(Astrocytoma, Oligodendroglioma), Clone AX1

Product Information

Catalog No.: DIA-AX1 (100µg)
DIA-AX1-M (20µg)
Clone: AX1
Concentration: 0.2 mg/ml
Isotype: Mouse IgG1/k
Specificity: ATRX
Immunogen: Recombinant protein fragment of human ATRX
Physical State: Lyophilized powder
Species: Human
Reactivity: 1p/19q co-deleted glioma
Control: 1p/19q co-deleted glioma
Negative Control: Glioma with intact 1p/19q chromosomes
Visualization: Nuclear

Reconstitution: DIA-AX1 (100µg), restore to 500 µl
DIA-AX1-M (20µg), restore to 100 µl
Reconstitute with sterile distilled water by gentle shaking for 10 minutes
Presentation: In PBS with 2% BSA, 0.05% NaN3, pH 7.4. Antibody purified from culture supernatant
Applications: Immunohistochemistry (IHC), standard formalin-fixed paraffin sections
Dilutions: 1:100 - 1:200 IHC-P
(General recommendation, validation of antibody performance/protocol is the responsibility of the end user. Positive/negative controls should be run simultaneously with patient specimen. Interpretation must be made by a qualified pathologist within the context of patient’s clinical history/other diagnostic tests.)
Associated Antibody: DIA-H09, anti-IDH1 R132H, clone H09

Reactivity
Antibody clone AX1 reacts specifically with ATRX in tissue sections from standard formalin-fixed brain tumor specimens. ATRX is a member of the Snf2 family of helicases/ATPases, which contribute to the remodeling of nucleosome structure. ATRX mutation, IDH1 mutation and chromosomal 1p/19q co-deletion are key molecular factors for the subtype diagnosis of diffuse gliomas. ATRX mutations in gliomas result in the loss of nuclear ATRX expression, which can be diagnosed by IHC analysis. Loss of ATRX expression is close to being mutually exclusive to 1p/19q co-deletion. Consequently, ATRX immunohistochemistry can be performed to replace laborious analysis of 1p/19q status by FISH techniques. Combined immunohistochemistry of ATRX and IDH1R132H substitutes molecular testing. Astrocytoma very often harbour ATRX-mutations (>90%), whereas Oligodendroglioma typically do not (<5%). The routine practical approach for diagnosing astrocytomas and oligodendrogliomas begins with performing IHC for ATRX and IDH1 R132H expression. Stepwise analysis of molecular parameters with initial IHC for ATRX and IDH1 R132H followed by 1p/19q analysis and then by IDH sequencing signifi- cantly reduces the number of molecular tests required for unequivocal diagnosis (Reuss et al., 2015).

Instructions for Use
Immunohistochemical staining of standard formalin-fixed paraffin sections
Deparaffinize and rehydrate according to standard procedures. Heat induced epitope retrieval (HIER) is required. For immunohistochemical detection different techniques can be used: Indirect immunoenzyme labeling with a secondary antibody conjugate, biotin/(strept)avidin-based detection, soluble enzyme immune complex or polymer-based detection. To detect antibody, follow the instructions provided with the particular visualization system. The antibody is suited for immunohistochemical staining using automated platforms. Use the antibody at 1:100 - 1:200 dilution for 30min at RT.

Storage and Stability
Store the lyophilized antibody at 2-8°C. For long time storage freeze at -20°C, thus the antibody is stable for at least one year. As reconstituted liquid store at 2-8°C short term (several weeks). For long term storage aliquot and freeze at -20°C or -80°C. Avoid repeated freeze / thaw cycles.

Safety Notes
The material contains 0.05% sodium azide as preservative. Although the quantity of azide is very small, appropriate care should be taken when handling this material. Avoid skin and eye contact, inhalation, and ingestion.
Figures

Immunohistochemistry of human ATRX in standard formalin-fixed paraffin-embedded glioma sections.

(pictures courtesy of Prof. Marcus Glatzel, Department of Neuropathology, University Hospital Eppendorf, Hamburg, Germany)

A: Strong nuclear reaction of anti-ATRX antibody clone AX1 in 1p/19q co-deleted glioma.
B: Loss of nuclear ATRX protein expression in glioma with intact 1p/19q documented by anti-ATRX immunohistochemistry.

(A) ATRX stain in 1p/19q-deleted glioma
(B) ATRX loss in glioma with intact 1p/19q

References

For research use only. Not for diagnostic or therapeutic use.

Changes of the original product formulation or composition for commercial use are expressly prohibited.