Anti-IDH1 R132H / DIA-H09
Mouse monoclonal anti-brain tumor marker
(Astrocytoma, Oligodendroglioma), Clone H09

Product Information

Catalog No.: DIA-H09 (500 μl)
DIA-H09-M (100ul)
Clone: H09
Isotype: Mouse IgG2a
Specificity: Human IDH1 R132H point mutation
Immunogen: Synthetic peptide, amino acid sequence CKPIIGHHAYGD
Physical State: Lyophilized powder
Species: Human
Reactivity: Positive
Control: Oligodendroglioma, diffuse astrocytoma
Negative Control: Pilocytic astrocytoma, primary glioblastoma (ca. 95% of cases negative)
Visualization: Cytoplasmic

Reconstitution: DIA-H09 lyophilizate restore to 500 μl.
DIA-H09-M lyophilizate restore to 100 μl.
Reconstitute with sterile distilled water by gentle shaking for 10 minutes
Presentation: PBS, 2% BSA, 0.05% NaN3, pH 7.4.
Antibody purified from culture sup. by goat anti-mouse affinity chromatography
Applications: Immunohistochemistry (standard formalin-fixed paraffin sections)
Western blot

Dilutions: 1:20-1:100 Immunohistochemistry (IHC)
1:500 Western Blot

(General recommendation, validation of antibody performance/protocol is the responsibility of the end user. Positive/negative controls should be run simultaneously with patient specimen. Interpretation must be made by a qualified pathologist within the context of patient’s clinical history/other diagnostic tests.)

Associated Antibody: DIA-AX1, anti-ATRX, clone AX1

Reactivity
Antibody clone H09 reacts specifically with the isocitrate dehydrogenase 1 (IDH1) R132H point mutation in tissue sections from formalin-fixed brain tumor specimens. Heterozygous point mutations of IDH1 codon 132 are frequent in World Health Organization (WHO) grade II and III gliomas. IDH1 R132H mutations occur in approximately 70% of astrocytomas and oligodendrogial tumors. The high frequency and distribution of the IDH1 R132H mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma WHO grade II from pilocytic astrocytoma or ependymoma. Noteworthy is the discrimination of the infiltrating edge of tumors with IDH1 mutation from reactive gliosis. This antibody is highly useful for tumor classification and in detecting single infiltrating tumor cells. The routine practical approach for diagnosing astrocytomas and oligodendroglias begins with performing IHC for IDH1 R132H and ATRX expression (Reuus et al., 2015).

Instructions for Use
Immunohistochemical staining of standard formalin-fixed paraffin sections
Deparaffinize and rehydrate according to standard procedures. Heat induced epitope retrieval (HIER) is required. For immunohistochemical detection different techniques can be used: Indirect immunoenzyme labeling with a secondary antibody conjugate, biotin/(strept)avidin-based detection, soluble enzyme immune complex or polymer-based detection. To detect antibody, follow the instructions provided with the particular visualization system. The antibody is suited for immuno-histochemical staining using automated platforms. Use the antibody at 1:20-1:100 dilution for 30min at RT.

Technical note
Diffuse astrocytoma WHO grade II may have low protein-expression. At high dilution of the antibody single tumor cells in the infiltration zone may not be stained (recommended dilution 1:20).

Intended use / regulatory status
Europe: For in Vitro Diagnostic Use / All other countries: For Research Use only

Storage and Stability
Store the lyophilized antibody at 2-8°C. For long time storage freeze at -20°C, thus the antibody is stable for at least one year. As reconstituted liquid store at 2-8°C short term (several weeks). For long term storage aliquot and freeze at -20°C or -80°C. Avoid repeated freeze / thaw cycles.

Safety Notes
The material contains 0.05% sodium azide as preservative. Although the quantity of azide is very small, appropriate care should be taken when handling this material. Avoid skin and eye contact, inhalation, and ingestion.
Figures

Immunohistochemistry of human IDH1 R132H in formalin-fixed paraffin-embedded brain tissue sections
(pictures courtesy of Prof. Dr. med. Andreas von Deimling, Department of Neuropathology, University Heidelberg / Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany)

A: Strong reaction of IDH1 mutation specific antibody clone H09 in tumor center of anaplastic oligoastrocytoma.
B: Infiltration zone of anaplastic astrocytoma with specific labelling of infiltrating glioma cells by antibody clone H09.
C: Identification of single tumor cells in white matter distant from tumor center with IDH1 mutation specific antibody clone H09.
D: Cortex infiltrated by oligodendroglioma with specific labelling of tumor cells by antibody clone H09.
E: Double staining of GFAP (gliarial fibrillary acidic protein, red) and clone H09 (brown) of oligodendroglioma infiltration zone demonstrating specific labelling of tumor cells but not of GFAP positive reactive astrocytes.
F: Strong reaction of IDH1 mutation specific antibody clone H09 with IDH1 R132H mutated diffuse astrocytoma (left) but not with wild type tumor (right).

References

Symbols

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>IVD</th>
<th>For In vitro Diagnostic Use</th>
<th>CE</th>
<th>Conformity with IVDD 98/79/EC</th>
</tr>
</thead>
</table>

Manufactured and distributed under exclusive licence from the German Cancer Research Center (DKFZ, Heidelberg, Germany) Changes of the original product formulation or composition for commercial use are expressly prohibited.